

Montpellier wrist Arthroscopy workshop

Traumatic lesions of TFCC: Diagnosis, XRay, Arthroscopy, Classification, Treatment

Didier FONTÈS, Paris - France

TFCC Pathology mechanism

LESION by overload or excessive twist

TFCC pathology : overload lesions

Acute lesions :

- Fall down on an outstretched hand in full pronation and UD
- Direct trauma
- Association with a radius fracture
- => Fighting and contact, fall at risk sports, high energy

TFCC pathology : overload lesions

Acute lesions :

- Fall down on an outstretched hand in full pronation and UD
- Direct trauma
- Association with a radius fracture

=> Fighting and contact, fall at risk sports, high energy

TFCC pathology : excessive twist

- Repetitive pronationsupination
- DRUJ over-twisted
- Associated trauma
- => golf, tennis, martial arts, pelota ...

Clinical assessment of TFCC lesions

- History of a fall on pronated and hyperextended wrist or over-twist of the wrist is frequently elicited
- Possible association with radius fracture
- Ulnar-side wrist pain + clicking

Clinical assessment of TFCC lesions

- Ulnar-side wrist pain +- clicking
- Painful TFCC compression
- Passive full supination
- DRUJ stability must be assessed (comparative piano key test in neutral rotation, supination and pronation)

TFCC Pathology Xray mesurement of ulnar variance

Ulnar Variance

Positive

Neutral

Negative

TFCC Pathology Xray mesurement of ulnar variance

neutral

TFCC Pathology Diagnosis confirmed by Arthro-CT scan ou MRI

TFCC Pathology Diagnosis confirmed by Arthro-CT scan ou MRI

Arthro CT scan or MRI : Assessment of foveal attachment, ulnar variance, DRUJ stability and extend of the lesion

Arthroscopic assessment of TFCC

TFCC :

- Texture +/- Hole
- Ulno-carpal ligaments
- Elasticity (trampoline effect)
- Hook test (Andrea Atzei)
- Ghost sign (Didier Fontes)
- □ DRUJ exploration

Arthroscopic assessment of TFCC Foveal lesions

TFCC :

- Texture +/- Hole
- Ulno-carpal ligaments
- Elasticity (trampoline effect)
- Hook test (Andrea Atzei)
- Ghost sign (Didier Fontes)
- DRUJ exploration

TFCC can be pulled upward and radially "wave effect"

Hook test + Atzei Class 2

Arthroscopic assessment of TFCC Foveal lesions

TFCC :

- Texture +/- Hole
- Ulno-carpal ligaments
- Elasticity (trampoline effect)
- Hook test (Andrea Atzei)
- Ghost sign (Didier Fontès)
- DRUJ exploration

TFCC proximal attachment can be pulled distally and ulnarly = reversed "trampoline sign" like a ghost waving under his sheet

Arthroscopic assessment of TFCC Foveal lesions

TFCC :

- Texture +/- Hole
- Ulno-carpal ligaments
- Elasticity (trampoline effect)
- Hook test (Andrea Atzei)
- Ghost sign (Didier Fontès)

DRUJ exploration

TFCC proximal attachment can be assessed

Historical Classification of A.K. Palmer TFCC lesions (1989)

Class 1 : traumatic lesions

1A

1B

1D

1C

Anatomical 3 Dimensional description of TFCC

Updated classification of Peripheral TFCC lesions

Arthroscopic specific signs Foveal lesions

Updated classification of Radial side TFCC 1D lesions

Therapeutic strategy for TFCC lesions

- Depending on the location of the lesion (vascularized or nonvascularized area, extend to DRUJ ligaments)
- Associated DRUJ dislocation or at risk
- □ Associated radius fracture

Therapeutic attitude (based on histopathology)

Radial (Palmer 1D1) or central lesions (Palmer 1A) in <u>Non VASCULARIZED</u> area

=> <u>debridement</u>

Peripheral lesions in <u>VASCULARIZED</u> area

=> attempt of suture

In Whipple's

In Whipple's

Why to debride TFCC ?

- Clinical reasons : « meniscus like » syndrom of the wrist as a little pebble in your shoe
- Histologic reasons depending on TFCC vascularization
- Biomechanical reasons
- Experimental healing procedures ?

Why to debride TFCC ?

- Clinical reasons : « meniscus like » syndrom of the wrist as a little pebble in your shoe
- Histologic reasons depending on TFCC vascularization
- Biomechanical reasons
- Experimental healing procedures ?

Why to debride TFCC ?

- Clinical reasons : « meniscus like » syndrom of the wrist as a little pebble in your shoe
- Histologic reasons depending on TFCC vascularization
- Biomechanical reasons
- Experimental healing procedures ?

How to debride ?

Classical installation
Scope 3-4 portal
Instruments 4-5 or 6R

Class 1A and 1D1

DORSAL

IA Palmer

Class 1D₂ dorsal

Class 1D₂ dorsal

Radial side reattachment (Fontès) mini-pushlock knotless simplified procedure

Class 1D₃ volar or 1D₄ complete

- Lesion of volar (rare) +/- volar DRUJ ligament
 - At risk ++ of instability
 - \Rightarrow attempt of reattachment (open or arthroscopic procedure)

Our Preferred Arthroscopic procedure: pushlock®

ID4 complete radial avulsion

Class 1D₃ volar or 1D₄ + fracture

- Lesion of volar +/- dorsal radius rim
- At risk ++ of instability
 - \Rightarrow attempt of reattachment
 - (open or arthroscopic procedure)

Our Preferred Arthroscopic procedure: direct K wires

Foveal TFCC lesions management

Foveal reattachment (Atzei & Luchetti)

mixed arthroscopic and mini-open procedure

Foveal reattachment (Atzei & Luchetti)

mixed arthroscopic and mini-open procedure

Foveal reattachment (Toshi Nakamura)

trans-ulnar procedure

Foveal reattachment (Geissler) mini-pushlock[®] Arthrex knotless procedure

TFCC Instrument Kit (AR-8825CP) includes: Slotted Cannula Obturator Guidewire, .86 mm Cannulated Drill, 1.8 mm

Accessories: TFCC SutureLasso (with Nitinol loop) AR-8704 short, 70° bend AR-8705 Mini Suture Hook 2-0 FiberStick (blue) AR-7222 2-0 FiberWire (blue) AR-7221 Bio-PushLock, 2,5 mm AR-8825B AR-8825P PEEK PushLock, 2.5 mm Wrist Traction Tower AR-16115

Foveal reattachment (Geissler) mini-pushlock[®] Arthrex knotless procedure

Foveal reattachment (Geissler) mini-pushlock[®] Arthrex knotless procedure

Minimum portals:

• (3-4 & 6R) Minimum material:

- 1IM needle
- Mini Pushlock drill or awl (2 mm diam.)
- Fiberwire suture

Mini PushLock[®] device

- Mini PushLock:
 - Diameter and Length: 2.5 x 8 mm
 - Suture: n/a
 - Impact design
 - Bio or PEEK material

Fiberwire[®] suture

- FiberWire
 - Strongest suture on the market
 - Superior pull-out strength
 - Least elastic suture

First step:

- Debridement of synovial tissue
- Assessment and Refreshment of TFCC foveal lesion

Second step:

- Assessment of the foveal foot print
- Refreshment of the avulsion area
- Introduction of the drillguide
- Drilling with 2mm cannulated drill or impaction of 2mm awl

Second step:

- Assessment of the foveal foot print
- Refreshment of the avulsion area
- Introduction of the drillguide
- Drilling with 2mm cannulated drill or impaction of 2mm awl

Third step (U knot):

- Introduction of IM needle transcutaneously
- The Fiberwire[®]suture is slid directly inside the joint through TFCC percutaneously and pulled out through 6R portal

Third step (U knot):

Needle + secured
 PDS is removed
 distally and pushed
 back in TFCC, paying
 attention not to cut
 the limb of PDS

Last step:

- Introduction of the 2 strands of Fiberwire inside distal eyelet of Pushlock[®]
- Impaction of the device
 + traction of the strands
- Section of the stitches
- Testing of the repair

Last step:

- Introduction of the 2 strands of Fiberwire inside distal eyelet of Pushlock[®]
- Impaction of the device
 + traction of the strands
- Section of the stitches
- Testing of the repair

Foveal reattachment peripheral complementary suture

Last step:

 Outside-in technique of Terry Whipple : In case of associated distal

TFCC class 1B lesion

Post-op, Rehabilitation

Long arm splint immobilization in case of suture:

- Neutral pronosupination (or in full supination)
- During 3 weeks
- Short cast immobilization:
 - During 3 weeks
 - Soft running and home trainer are authorized
 - Mobilization of the elbow
- Rehabilitation:
 - After 6 weeks post-op
 - Physical therapy program (range of motion, strength)
 - Anti-inflammatory local medications

• *Return to sports training:*

- After 2 months
- With splint protection or strapping

Conclusion

TFCC foveal or radial lesions not so rare (sport ++)

- All inside knotless procedure seems to be :
 - a reproducible surgical procedure
 - accurate and rewarding
 - Short learning curve
- Clinical series are necessary to confirm the reliability of this procedure

Arthroscopic all inside procedure is undoubtedly the

gold standard

